If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-12x-3=0
a = 6; b = -12; c = -3;
Δ = b2-4ac
Δ = -122-4·6·(-3)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{6}}{2*6}=\frac{12-6\sqrt{6}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{6}}{2*6}=\frac{12+6\sqrt{6}}{12} $
| 8=2j-6 | | 8(n-1)=4n+4 | | 3(w-1)=8w+42 | | -5k+4=9 | | 6x+29=-5 | | x-8/6=-1 | | 4.6x-8.4=14.6 | | 4.00xx=0.80 | | 266+n=1000 | | -4=r-9/2 | | b/2+1=-6 | | -10(x+5)=40 | | 7+10h=-15 | | -1h–2≤=-4 | | 24,3+t=94,7 | | -1h–2=-4 | | 6(x-+3)=48 | | 2=p-9/5 | | 27=4.5(4-n) | | b+-2=6 | | 5-2t=-1 | | -5u+2=-2(u-7) | | -3=-10+x/3 | | 182=8-u | | 5–2t=-1 | | 19x+18+7x-1+10x-9=180 | | 15d+2d-14d-2d=16 | | 32-3/8=3/4y+5 | | 4x-10/2=2x-5 | | 4(x+3)+8=3(x-1)+15 | | 18-2x=6-4x+12 | | -5x–7=13 |